
EXERCISES	FOR	IMAGE	PROCESSING	I	
PROBLEM	SHEET	4	

Due	date:		 26.11.15	before	12:00h	

Topics:	 Histograms,	Filters,	Convolution	and	Fourier-Transform	

Submission:	Please	send	your	solutions	via	email	to	seppke@informatik.uni-hamburg.de.	

	

1	THEORETICAL	PROBLEMS	 10	P.	

a) Histograms	and	Noise:	
- Explain	briefly,	what	a	histogram	is	representing,	and	how	it	is	created	from	the	image.	

What	kind	of	histogram	do	you	expect	for	an	image	showing	white	parcels	on	a	black	
conveyor	belt?	

- Assume,	that	your	camera	is	affected	by	sensor	noise.	Does	that	change	the	histogram,	
too?	If	yes,	describe	the	changes	and	the	arising	problems.	

a) Projections:	
How	can	projections	be	used	to	separate	lines	and	characters	in	optical	character	
recognition	(OCR)?		

b) Filters:	
Show	the	linear	character	of	Gaussian	averaging	and	the	non-linear	character	of	median	
filtering.	In	other	words,	show	that	𝑚𝑒𝑑 𝑓% 𝑥 + 𝑓(𝑥 ≠ 𝑚𝑒𝑑 𝑓% 𝑥] + 𝑚𝑒𝑑[𝑓(𝑥 	for	
arbitrary	regions	of	pixels	and	two	image	brightness	functions	𝑓%	and	𝑓(.	

c) Convolution:	
The	image	B1	shows	a	bright	square	before	a	darker	background	(see	figure	on	the	right).	
Let	B2	be	the	image,	which	results	from	convolving	B1	with	itself.	Describe	B2	in	
qualitative	terms.	

	

	

	

	

	

	

	

	

2	PRACTICAL	PROBLEMS	 10	P.	

a) Greyvalue	normalization:	
Determine	and	implement	a	grayscale	transformation	that	maps	the	darkest	5%	of	the	
image	pixels	to	black,	the	brightest	10%	of	pixels	to	white	(255)	and	linearly	transforms	
the	greyvalues	of	all	remaining	pixels	between	black	and	white.	

b) Fourier-Transform:	
You	have	a	program,	which	allows	the	computation	of	1D-FFT	for	2K	values	of	a	real	
discrete	function.	How	can	you	make	use	of	this	function	to	compute	the	2D-Fourier-
Transform	for	an	image	with	512	x	512	pixels?	How	can	you	realize	the	back	
transformation?	
Implement	your	solution	with	numpy.fft	and	compare	the	results	with	the	available	2D-
Fourier	transform.	To	simplify	the	task,	use	greyvalue	images	in	2D-arrays.	

Useful	numpy.fft-commands		
(from:	http://docs.scipy.org/doc/numpy/reference/routines.fft.html):	

- 2D-Fourier	transform:		fi	=	fft2(i)	
- 1D-Fourier	transform	of	row	k:		fz	=	fft(i[k:k+1,	:])	
- 1D-Fourier	transform	of	column	k:		fs	=	fft(i[:,	k:k+1])	
- Inverse	transform:	ifft	and	ifft2	

(the	output	is	a	complex-valued	numpy	array	with	real	and	imaginary	values)	

